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Orientational order in model dipolar fluids

Philip J. Camp and G. N. Patey
Department of Chemistry, University of British Columbia, Vancouver, Canada V6T 1Z1

~Received 12 April 1999!

Fluids of hard spheres each carrying two parallel point dipoles have been investigated using constant-volume
Monte Carlo computer simulations. The results show that both ferroelectric and antiferroelectric fluid phases
can be stabilized at high density and low temperature by dipolar interactions alone, if the separation between
the dipoles on each sphere is sufficiently large. A simple lattice calculation provides some insight into the
balance between dipole energy and orientational entropy which governs the polarization state.
@S1063-651X~99!00610-8#

PACS number~s!: 61.20.Ja, 64.70.Md, 75.50.Mm, 77.80.2e
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I. INTRODUCTION

In a ferroelectric phase of dipolar molecules the orien
tions of the molecular dipoles are aligned so as to give a
macroscopic dipole moment. Born was the first to consi
whether orientational order could be induced in the flu
phase by dipole-dipole interactions alone@1#, but this issue
remained largely unanswered until recently. While ferroel
tric fluids have proved elusive in the laboratory, compu
simulations@2–4# and theoretical studies@5,6# have identi-
fied molecular models which do exhibit such phases. Co
puter simulations have shown that dense fluids and so
made up of point dipolar soft spheres exhibit ferroelec
phases at sufficiently low temperatures@2#, as have simula-
tions of the corresponding dipolar hard-sphere model@3,4#. It
is a combination of the long-range interactions between
aligned dipoles and the resulting reaction field, and sh
range correlations which stabilizes the ferroelectric state.
a result, while simulations using conducting boundary c
ditions result in a ferroelectric phase, those using vacu
boundary conditions result in a domain structure with no
polarization@2#.

Antiferroelectric orientationally ordered phases have a
been observed in simulations of nonspherical dipolar h
particles using conducting boundary conditions@7#. These
phases are stabilized by the anisotropy of the short-ra
repulsions, i.e., the shape of the molecules, as well as by
long-range electrostatic interactions. In this paper we pre
evidence from computer simulations of a homogeneous
tiferroelectric orientationally ordered phase formed by a fl
of hard spheres carrying two point dipoles. The fluid po
sessesn̂↔2n̂ symmetry, wheren̂ is the preferred direction
of alignment, or director. Such a fluid can therefore be
scribed as having normal nematic order, as this symmetr
also present in nematic liquid crystals. Since the short-ra
repulsions are isotropic, the antiferroelectric phase is st
lized solely by the electrostatic interactions. The parti
model we consider is sketched in Fig. 1. It consists of a h
sphere of diameters, possessing two parallel point dipole
m15m25mê, wherem is the dipole moment andê is the unit
orientation vector.m1 andm2 are displaced from the spher
center by6(ks/2)ê. The interaction energy between tw
such spheres is given by the hard-core interaction plus a
over the interactions between dipoles on different sphe
PRE 601063-651X/99/60~4!/4280~5!/$15.00
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The interaction energyui j
DD between two dipolesmi andmj ,

with position vectorsr i and r j , respectively, is

ui j
DD5

mi•mj

r i j
3 2

3~mi•r i j !~mj•r i j !

r i j
5 , ~1!

wherer i j 5r j2r i and r i j 5ur i j u. This model is an extension
of the normal dipolar hard-sphere model, where the cen
dipole is split in half and the moieties displaced towards
edge of the sphere. Although these dipolar hard-sphere m
els may not be particularly realistic for molecules, they
have some relevance for ferrofluids and colloidal susp
sions@8–10#. Furthermore, by selecting a spherical hard-co
interaction we are able to isolate dipolar effects explicitly

The system is characterized by the following quantiti
The reduced number density isr* 5rs3, wherer5Ns /V,
Ns is the number of spheres, andV is the volume of the cubic
simulation cell. The reduced dipole moment is given
m* 5Am2/kBTs3, wherekB is Boltzmann’s constant andT
is the temperature. In the simulationsm* 51.25, so that the
total dipole moment on each spherem total* 52.5. The reduced
temperature is given byT* 5(1/m* )250.64. A dipole sepa-
ration of ks50 corresponds to the normal dipolar har
sphere system in which Weis and Levesque found ferroe
tric fluid and ferroelectric solid phases@3,4#. Weis and
Levesque report a ferroelectric phase form total* 52.5 when
r* >0.80, and form total* 53.5 whenr* >0.30.

This paper is organized as follows. In Sec. II we provi
details of the simulation method used in this study. In S
III we present the simulation results. In Sec. IV we descr

FIG. 1. Sketch of the dipolar hard-sphere model. The dipoles
of equal magnitude, parallel and equidistant from the center of
sphere.
4280 © 1999 The American Physical Society
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PRE 60 4281ORIENTATIONAL ORDER IN MODEL DIPOLAR FLUIDS
a simple lattice calculation which helps in the interpretat
of the simulation results. Section V concludes the paper.

II. COMPUTER SIMULATIONS

We have performed constant-volume Monte Carlo~MC!
simulations ofNs5125 or 256 spheres with dipole separ
tions ks50, 0.25s, and 0.3s. For each dipole separatio
and system size, we have studied densities in the range
<r* <0.925. All simulations were performed using cub
periodic boundary conditions. The long-range dipolar int
actions were handled using the Ewald summation met
@11,12#, with conducting boundary conditions~the dielectric
constant of the surrounding continuume85`!. All dipole-
dipole interactions were included in the energy sum exc
those between dipoles on the same sphere. Ineverysimula-
tion the initial configuration was that of a well-equilibrate
hard-sphere fluid with random dipole orientations chos
uniformly from the unit sphere. Each MC cycle consisted
an attempted translation and rotation ofNs randomly se-
lected particles. The displacement parameters were adju
to give approximately 30% acceptance rates for both tra
lations and rotations. A typical run consisted of at least 15

MC cycles for equilibration followed by at least another 15

MC cycles over which block averages were accumulat
Equilibrium quantities were calculated every 10 MC cycle
and averaged over blocks of 103 MC cycles. Statistical errors
were estimated by treating each block average as a sta
cally independent measurement.

Orientational order was monitored by calculating t
second-rank order tensorQ, defined by@13#

Q5
1

2Ns
(
i 51

Ns

~3êi êi2I !, ~2!

whereêi is the orientation unit vector of spherei andI is the
second-rank unit tensor. Diagonalization ofQ yields three
eigenvalues and three eigenvectors. The highest eigenv
is the second-rank order parameterS, and the corresponding
normalized eigenvector is the directorn̂ @14#. S can also be
expressed as the average of (3 cos2 u21)/2 over all of the
particles, whereu is the angle between the orientation vec
of a given particle and the instantaneous director.S is unity
in perfectly aligned ferroelectric and antiferroelectric pha
and zero in the isotropic phase. The polarizationP is given
by

P5U 1

Ns
(
i 51

Ns

êi•n̂U. ~3!

P is unity in a perfectly aligned ferroelectric phase and z
in an antiferroelectric phase and in the isotropic phase.S is
therefore the indicator of orientational order andP discrimi-
nates between ferroelectric and antiferroelectric phases.
ferroelectric phaseP.A(2S11)/3>S, while in an antifer-
roelectric phaseP,S. Using these criteria a ferroelectri
phase can be distinguished from an antiferroelectric ph
Finite-size effects are apparent inS calculated via the diago
nalization of Q @15#; in the isotropic fluid the errors ar
O(1/ANs), while in orientationally ordered phases they a
O(1/Ns).
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III. RESULTS

A. k50

In Table I we report simulation results fork50 andNs
5125. With a dipole momentm* 51.25 this system corre
sponds to the normal dipolar hard-sphere fluid withm total*
52.5 as simulated by Weis and Levesque@3#. Our results for
the energies and order parameters agree well with the da
Ref. @3#. In Fig. 2 we show the order parametersP and S
against density. Our results confirm the existence of a fe
electric phase~S.0, P.S! at densitiesr* >0.7. As noted in
Sec. II, in the isotropic phase finite-size effects account
nonzero order parameters which areO(1021).

B. k50.25

In Table I we list simulation results fork50.25 andNs
5125. In Fig. 3 we show the order parametersP and S
against density. It is clear that a ferroelectric phase~charac-
terized byS.0 andP>S! appears at a densityr* .0.6. At

TABLE I. MC simulation results with dipole separationks and
reduced densityr* . U is the average configurational energy,P is
the polarization, andS is the second-rank order parameter. T
numbers in parentheses denote the statistical uncertainty in the
digit.

r* Us3/Nsm
2 P S MC cycles/103

k50, Ns5125
0.40 27.1~1! 0.25~6! 0.12~4! 200
0.50 27.21~8! 0.4~1! 0.14~5! 236
0.60 27.36~7! 0.3~1! 0.13~3! 226
0.70 27.72~5! 0.68~7! 0.36~8! 264
0.80 28.05~7! 0.76~3! 0.46~5! 300
0.90 28.41~5! 0.82~1! 0.57~3! 365

k50.25, Ns5125
0.40 28.54~8! 0.07~2! 0.08~2! 200
0.50 28.56~8! 0.31~1! 0.25~1! 324
0.60 28.4~1! 0.63~3! 0.34~4! 339
0.70 28.81~7! 0.902~5! 0.74~1! 340
0.80 28.97~7! 0.932~7! 0.81~2! 400
0.90 29.01~6! 0.946~2! 0.850~6! 400

k50.3, Ns5125
0.40 29.59~7! 0.26~4! 0.09~1! 200
0.50 29.56~6! 0.09~1! 0.26~1! 180
0.60 29.46~7! 0.19~1! 0.17~1! 400
0.70 29.42~8! 0.10~4! 0.16~1! 400
0.80 29.38~6! 0.09~1! 0.34~2! 400
0.90 29.66~6! 0.207~4! 0.546~7! 400

k50.3, Ns5256
0.40 29.64~5! 0.082~6! 0.13~1! 33
0.50 29.59~4! 0.085~7! 0.090~7! 56
0.60 29.61~3! 0.14~1! 0.12~1! 76
0.70 29.70~5! 0.021~4! 0.133~6! 397
0.80 29.80~5! 0.17~2! 0.153~9! 445
0.90 29.86~3! 0.138~4! 0.444~6! 414
0.925a 210.09~4! 0.63~1! 0.61~1! 1000
0.925b 210.15~6! 0.20~1! 0.61~1! 797

aRun 1.
bRun 2.
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a densityr* 50.9, the order parameters attain equilibriu
values ofP.0.95 andS.0.85, which are to be compare
with P.0.82 andS.0.57 fork50 at the same density. Th
increase in the orientational order and the decrease in
transition density on changing fromk50 to k50.25 are
likely due to the lowering of the energy associated with
nose-to-tail configuration of the spheres. This results in
increase in orientational correlations which eventually g
way to global orientational order as the associated corr
tion length diverges. With a dipole separation ofks
50.25s the system still favors ferroelectric order at hig
density; we shall discuss this point further in Sec. IV.

The relative scarcity of ferroelectric liquids in the labor
tory is likely due to the fact that crystallization often pr
empts the isotropic-ferroelectric-liquid transition. To che
that the system is fluid we have monitored the ‘‘diffusion
of particles by calculating the mean-squared displacemen
follows:

^R2&t5
1

Ns
(
i 51

Ns

@r i~t!2r i~0!#2, ~4!

wherer i(0) is the position of thei th particle at the start o
the simulation, andr i(t) is its position aftert MC cycles.

FIG. 2. Order parameters against reduced densityr* for k50,
Ns5125: polarizationP ~solid line!; second-rank order parameterS
~dashed line!.

FIG. 3. Order parameters against reduced densityr* , for k
50.25, Ns5125: polarizationP ~solid line!; second-rank order pa
rameterS ~dashed line!.
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For the calculation of̂ R2&t the particles were allowed to
leave the central simulation cell. In Fig. 4 we show the ev
lution of ^R2&t during simulations withk50.25 at a density
r* 50.9, i.e., the highest density studied with this dipo
separation. Clearly the particles are diffusing at this h
density and hence the system is fluid. We conclude, th
fore, that the system withk50.25 undergoes a transition to
ferroelectric fluid at high density.

C. k50.3

Simulation results fork50.3 and system sizesNs5125
andNs5256 are given in Table I. With this dipole separatio
we find strong second-rank orientational order (S.0) for all
runs withr* >0.9. In this density regime three simulation
showed antiferroelectric order~Ns5125, r* 50.9; Ns
5256, r* 50.9; Ns5256, r* 50.925, run 2! and one
showed ferroelectric order~Ns5256, r* 50.925, run 1!.
Runs 1 and 2 withNs5256 andr* 50.925 were started from
different well-equilibrated hard-sphere configurations. Ta
I shows that the configurational energies in the ferroelec
and antiferroelectric states in runs 1 and 2 are ident
within statistical accuracy, as are the second-rank order
rameters. Clearly there is no longer a strong preference t
in a ferroelectric state over an antiferroelectric state. Insp
tion of some simulation configurations confirmed that t
antiferroelectric states for each system size were homo
neous and free of the ferroelectric domains which have b
observed in simulations of dipolar particles in vacuu
boundary conditions (e851) @2#.

In Fig. 5 we show the evolution of the order paramete
during runs 1 and 2 withk50.3 andr* 50.925. In both
cases very long runs were required, which reflects the s
pling difficulties which arise from the strong dipole-dipo
attraction between spheres in the nose-to-tail configurati

In Fig. 4 we includê R2&t for runs 1 and 2. It is clear tha
the systems are fluid. After 106 MC sweeps each particle, o
average, has diffused approximately one-and-a-half sph
diameters, which highlights the difficulty in simulating sy
tems with strong highly directional attractive potentials. It
these sampling difficulties which precluded us from simul
ing systems withk.0.3; some preliminary runs withk

FIG. 4. Mean-squared displacement^R2&t against Monte Carlo
cycle: k50.25, r* 50.9, andNs5125 ~solid line!; k50.3, r*
50.925, andNs5256, run 1~dashed line! and run 2~dot-dashed
line!.
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50.35 andk50.5 showed very sluggish behavior and d
not converge within accessible run lengths.

IV. LATTICE CALCULATION

The simulation results reported in Sec. III can be summ
rized as follows. Fork50, 0.25, and 0.3 the isotropic flui
undergoes a transition to an orientationally ordered fluid
high density. Fork50 and k50.25 the fluid is strongly
ferroelectric. Fork50.3, however, the simulations show th
the fluid has no preference for ferroelectric order over a
ferroelectric order. This implies that the free energies of
ferroelectric and antiferroelectric phases must be very sim
at this dipole separation.

An accurate theoretical calculation of the free energy
such dense fluids is, at present, unfeasible. In view of this
shall estimate the relative free energies of the ferroelec
and antiferroelectric states of a lattice of dipolar hard sphe
and show that the stable polarization state changes with
dipole separation.

Tao and Sun@16# have shown that the ground state clos
packed crystal structure of regular dipolar hard spheresk
50) in the ferroelectric state is body-centered tetrago
~BCT! with lattice vectorsa0x̂, b0ŷ, andc0ẑ and cell param-
eters

a05sA3/2, b05sA3/2, c05s. ~5!

The close-packed reduced density isr0* 54/3. We assume
that BCT is the stable state at finite temperature for b
ferroelectric and antiferroelectric phases. This assump
will be sufficient to show that a ferroelectric-antiferroelect
crossover can be driven by dipolar interactions alone
without an accompanying structural transition. The BC
structure can be considered as a lattice of chains, each c
prised of spheres in contact, aligned along thez direction.
Chains are a structural motif found in fluid and solid pha
of dipolar hard spheres@4,17#. For densitiesr,r0 we
choose cell parameters

a5ga0 , b5gb0 , c5s, ~6!

FIG. 5. Evolution of the order parameters during the two sim
lations with k50.3, r* 50.925, andNs5256: run 1~top!; run 2
~bottom!; P ~solid line!; S ~dashed line!.
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whereg5Ar0 /r, so that the spheres in a given chain rema
in contact. This reflects the fact that the expansion of a r
close-packed lattice would likely be anisotropic by virtue
the strong intrachain interactions.

Consider a sphere, on a given chain, with coordina
~0,0,0!. Spheres in that chain have coordinates (0,0,6 j s)
where j 50,1,2,... . The dipoles on each sphere on a giv
chain are aligned parallel to the chain. Spheres in the f
nearest-neighboring chains have coordinates„6a/2,6b/2,
6( j 11/2)s…. Spheres in the four next-nearest-neighbori
chains have coordinates (6a,0,6 j s) and (0,6b,6 j s).
Tao and Sun evaluated the contribution of chain-chain in
actions beyond next-nearest neighbors to be;1% @16# and
so we shall ignore these here. In the antiferroelectric ph
the four nearest neighbors of a given chain are aligned a
parallel to it, while the four next-nearest neighbors a
aligned parallel to it. We take the polarization in the ferr
electric phase to beP51, i.e., all chains are aligned paralle
to one another. We have computed the energies of the fe
electric and antiferroelectric states,U f andUa, respectively,
as a function ofk. All dipole-dipole interactions between
spheres withu j 12 j 2u50,1,2,...,105 were included, which is
sufficiently long ranged for our purposes. The interactio
between dipoles on the same sphere were not included in
energy sum. We estimate the free energies of the ferroe
tric and antiferroelectric states by including the orientatio
entropy due to the presence of ‘‘up’’ and ‘‘down’’ dipoles
i.e.,

F f5F01U intra
f 1U inter

f , ~7!

Fa5F01U intra
a 1U inter

a 2NskBT ln 2. ~8!

F f andFa are the free energies of the ferroelectric and an
ferroelectric phases, respectively,U intra andU inter are the in-
trachain and interchain energies, respectively, andF0 con-
tains other contributions to the free energy which a
assumed to be equal in both phases.

Since the intrachain energy is identical in the ferroelec
and antiferroelectric phases, the relative free energy,F rel
5(F2F02U intra), is sufficient to identify the thermody

FIG. 6. Interchain energiesU inter and relative free energiesF rel

for the ferroelectric (f ) and antiferroelectric (a) body-centered te-
tragonal lattices as a function ofk, with reduced dipole momen
m* 51.25 and reduced densityr* 50.925: U inter

f 5F rel
f ~solid line!;

U inter
a ~dashed line!; F rel

a ~dot-dashed line!.
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4284 PRE 60PHILIP J. CAMP AND G. N. PATEY
namically stable state. Figure 6 showsU inter and F rel as a
function of k for the two polarization states withm* 51.25
and r* 50.925. With this dipole strength and density t
antiferroelectric phase is seen to be more stable than
ferroelectric phase at dipole separations in the range 0.s
<ks<0.67s. The variation in energy in the two states
due to the change in proximity of dipoles in neighbori
chains, which is itself dictated by the underlying BCT stru
ture. Withm* 51.25 andr* 50.9 the corresponding range o
dipole separations is 0.32s<ks<0.68s.

In Table II are shown the intrachain and interchain co
tributions to the configurational energy fork50.25 andr*
50.9, and fork50.3 andr* 50.9,0.925. The lattice con
figurational energies are 20–30 % higher than those fr
fluid simulations with the same parameters, which is to
expected. In the lattice calculations the magnitude of the
terchain energy is only 2–4 % that of the total energy. In
ferroelectric phase the interchain energy is negative, co
sponding to attractions between chains, while in the anti
roelectric phase the chain-chain interactions are repuls
Therefore, the antiferroelectric phase becomes more st
when its orientational entropy compensates for the differe
in interchain energy between the two polarization states.

From our simulations withm* 51.25 andr* 50.9,0.925
it appears that the antiferroelectric phase is at least as s
as the ferroelectric phase for dipole separationsks>0.3. An

TABLE II. Energies for the ferroelectric and antiferroelectr
body-centered tetragonal lattices with dipole separationks and re-
duced densityr* . U intra is the intrachain energy andU inter is the
interchain energy.

k r* U intras
3/Nsm

2 U inters
3/Nsm

2

Ferroelectric Antiferroelectric
0.25 0.9 211.4385 20.3799 0.4236
0.30 0.9 212.4416 20.2622 0.2924
0.30 0.925 212.4416 20.2882 0.3228
th
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upper limit onks could not be determined using simulation
due to the convergence difficulties highlighted in Sec. III
There is, however, good agreement between the lower l
on ks obtained from the simulations of the fluid and th
predicted by the lattice calculations.

V. CONCLUSION

In this paper we have discussed a variation of the dipo
hard-sphere model, where each sphere carries two dip
displaced towards the edges. We have presented simula
results for a fixed dipole momentm* 51.25 and densities in
the range 0.4<r* <0.925. For dipole separationsks50,
0.25s and 0.3s we observe transitions from the isotrop
fluid to orientationally ordered phases as the density is
creased. Fork50 and 0.25 the high-density fluids have n
polarization and so they are ferroelectric fluids. Fork50.3,
however, the high-density fluid has no strong preference
ferroelectric order over antiferroelectric order. In a sense
antiferroelectric fluid can be termed a normal nematic flu
by virtue of its n̂↔2n̂ symmetry, wheren̂ is the preferred
direction of alignment. The simulation results indicate th
the antiferroelectric fluid becomes at least as stable as
ferroelectric fluid whenk50.3 andr* >0.9. To gain some
insight into this effect we have performed an elementary
tice calculation which shows that the antiferroelectric pha
is thermodynamically stable over a range of dipole sepa
tions. Furthermore, the predicted range of stability is con
tent with the simulation results. This is an example of a flu
in which dipole-driven orientational order occurs without
net polarization.
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