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Orientational order in model dipolar fluids

Philip J. Camp and G. N. Patey
Department of Chemistry, University of British Columbia, Vancouver, Canada V6T 1Z1
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Fluids of hard spheres each carrying two parallel point dipoles have been investigated using constant-volume
Monte Carlo computer simulations. The results show that both ferroelectric and antiferroelectric fluid phases
can be stabilized at high density and low temperature by dipolar interactions alone, if the separation between
the dipoles on each sphere is sufficiently large. A simple lattice calculation provides some insight into the
balance between dipole energy and orientational entropy which governs the polarization state.
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. INTRODUCTION The interaction energy;° between two dipolegy and u; ,
with position vectors; andr;, respectively, is
In a ferroelectric phase of dipolar molecules the orienta-

tions of the molecular dipoles are aligned so as to give a net 3wt ()
macroscopic dipole moment. Born was the first to consider uiD,D:”' 3”1 _ A "5 /Il ,
whether orientational order could be induced in the fluid ! rij I
phase by dipole-dipole interactions alofig, but this issue
remained largely unanswered until recently. While ferroelec-whereri_ =r,—r, andr;;=|r;|. This model is an extension

tric fluids have proved elusive in the laboratory, computerys the normal dipolar hard-sphere model, where the central
simulations[2—4] and theoretical studiefb,6] have identi-  inge is split in half and the moieties displaced towards the
fied mo_lecula_r models which do exhibit such phases. Cor_‘nédge of the sphere. Although these dipolar hard-sphere mod-
puter simulations have shown that dense fluids and solidg|s" may not be particularly realistic for molecules, they do
made up of point dipolar soft spheres exhibit ferroelectrichaye some relevance for ferrofiuids and colloidal suspen-
phases at sufficiently low temperatuléd, as have simula-  gong78_10). Furthermore, by selecting a spherical hard-core
tions of the corresponding dipolar hard-sphere mp8el. It jnieraction we are able to isolate dipolar effects explicitly.

is a combination of the long-range interactions between the 114 system is characterized by the following quantities.
aligned dipoles and the resulting reaction field, and shortta reduced number density & = po, wherep=N_/V

range correlations which stabilizes the ferroelectric state. AR is the number of spheres, ands the volume of the cubic
S [l

a result, while simulations using conducting boundary con;i uiation cell. The reduced dipole moment is given by

ditions result in a ferroelectric phase, those using vacuum JuZkgTo? . ,
. ; ~ - =\ ulkgTo®, wherekg is Boltzmann's constant ant
boundary conditions result in a domain structure with no nejg o temperature. In the simulatiopg =1.25, so that the

polarization[2]. . _
Antiferroelectric orientationally ordered phases have als fotal d'p?le moment otl;] f"iChlpr qﬁ”g_&,ji 'I(;he lr educed
been observed in simulations of nonspherical dipolar har mperature 1S given V" = (1/p*)"=0.64. Ipol€ Sepa-
ration of ko=0 corresponds to the normal dipolar hard-

particles using conducting boundary conditidi. These %ohere system in which Weis and Levesque found ferroelec-

phases are stabilized by the anisotropy of the short-ran . . . X
repulsions, i.e., the shape of the molecules, as well as by tgt 'Cvglslggeag:)cﬁrg)ef:;fg";e;?iléd pﬁgzze[;f]'_vzvg'swﬁgg
tal— <-

long-range electrostatic interactions. In this paper we presertt” . .
evidence from computer simulations of a homogeneous ar2” = 0-80, and foru o= 3.5 whenp* =0.30. _
tiferroelectric orientationally ordered phase formed by a fluid  This paper is organized as follows. In Sec. Il we provide
of hard spheres carrying two point dipoles. The fluid IOOS_de'[alls of the S|mul<_':1t|on r_nethod used in this study. In Sec.
sessedi — i symmetry, wherd is the preferred direction Il we present the simulation results. In Sec. IV we describe
of alignment, or director. Such a fluid can therefore be de-
scribed as having normal nematic order, as this symmetry is
also present in nematic liquid crystals. Since the short-range
repulsions are isotropic, the antiferroelectric phase is stabi-
lized solely by the electrostatic interactions. The particle
model we consider is sketched in Fig. 1. It consists of a hard
sphere of diametew, possessing two parallel point dipoles,
M= mo= &, whereu is the dipole moment anélis the unit
orientation vectoru, and u, are displaced from the sphere
center by * («o/2)é. The interaction energy between two  FIG. 1. Sketch of the dipolar hard-sphere model. The dipoles are
such spheres is given by the hard-core interaction plus a susf equal magnitude, parallel and equidistant from the center of the
over the interactions between dipoles on different spheresphere.
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a simple lattice calculation which helps in the interpretation TABLE I. MC simulation results with dipole separatiafr and

of the simulation results. Section V concludes the paper. reduced densityp*. U is the average configurational energyis
the polarization, ands is the second-rank order parameter. The

Il. COMPUTER SIMULATIONS numbers in parentheses denote the statistical uncertainty in the last
' digit.

We have performed constant-volume Monte C4MC)
simulations ofNg=125 or 256 spheres with dipole separa- p* Uo®/Ngu? P S MC cycles/16
tions ko=0, 0.25, and 0.3 For each dipole separation

) . g k=0, Ns=125
ind*s<ystem size, we hav_e studied densities in thg range 00440 _7.4(1) 0.256) 0.124) 200
<p*=<0.925. All simulations were performed using cubic 0.50 _7.218) 0.4(1) 0.145) 236
periodic boundary conditions. The long-range dipolar inter-" : : '
actions were handled using the Ewald summation method 89 —7.367) 0.3D) 0.193) 226
[11,12), with conducting boundary conditiorithe dielectric 0.70 —7.725) 0.687) 0.368) 264
constant of the surrounding continuueh=). All dipole-  0-80 —8037)  0.763)  0.485 300
dipole interactions were included in the energy sum except-90 —8415  0821) 0573 365
those between dipoles on the same spherevhrysimula- x=0.25, Ny=125
tion the initial configuration was that of a well-equilibrated 0-40 —-8548  0.072)  0.082) 200
hard-sphere fluid with random dipole orientations choser®.50 —8.568) 0.311)  0.251) 324
uniformly from the unit sphere. Each MC cycle consisted of0.60 —8.4(1) 0.633)  0.344) 339
an attempted translation and rotation Nf randomly se- 0.70 —-8.817) 0.9025  0.741) 340
lected particles. The displacement parameters were adjust€d0 —8.9717) 0.9327)  0.812) 400
to give approximately 30% acceptance rates for both trans3.90 —9.01(6) 0.9462) 0.8506) 400
lations and rotations. A typical run consisted of at least 10 k=0.3, Ng=125
MC cycles for equilibration followed by at least anotheP 10 0.40 —9.597) 0.264) 0.091) 200
MC cycles over which block averages were accumulatedp.50 —9.566) 0.091)  0.261) 180
Equilibrium quantities were calculated every 10 MC cycles,0.60 —9.467) 0.191) 0.171) 400
and averaged over blocks of IMC cycles. Statistical errors g 7g —~9.428) 0.104) 0.161) 400
were estimated by treating each block average as a statisti-gg -9.396) 0.091) 0.342) 400
cally independent measurement. 0.90 ~0666) 0.2074) 0.5467) 400
Orientational order was monitored by calculating the k=0.3, Ny=256
second-rank order tens@, defined by{13] 0.40 —0645 00826) 0.131) 33
1 Ng 0.50 —9.594) 0.0857)  0.09Q7) 56
Q= 2 (388 1), 2) 0.60 —9.61(3) 0.141) 0.121) 76
2Nsi=1 0.70 -9.705)  0.0244) 0.1336) 397
whereg is the orientation unit vector of spherrandl is the 8'28 _2.2(15) 0.172)  0.1539) 443
) X L ’ . 863)  0.1384) 0.4446) 414
second-rank unit tensor. Diagonalization @fyields three
. . . . 0.92% —10.094) 0.631) 0.61(2) 1000
eigenvalues and three eigenvectors. The highest elgenvalldegw _10156)  0.200) 0.611) 297
is the second-rank order parame$rand the corresponding ) ) )
normalized eigenvector is the direct®df14]. S can also be aryn 1.
expressed as the average of (3%a®s1)/2 over all of the bRryn 2.
particles, wherd is the angle between the orientation vector
of a given particle and the instantaneous direciis unity Il RESULTS
in perfectly aligned ferroelectric and antiferroelectric phases A. 1=0
and zero in the isotropic phase. The polarizatidis given i i
by In Tabl_e | we report simulation results_ far=0 andNg
=125. With a dipole momeni* =1.25 this system corre-
1 Ns sponds to the normal dipolar hard-sphere fluid witfi,
P= N_iEl &-nl. (8)  =2.5as simulated by Weis and Leves8& Our results for
=

the energies and order parameters agree well with the data in
JRef. [3]. In Fig. 2 we show the order parametd?sand S
against density. Our results confirm the existence of a ferro-
therefore the indicator of orientational order aPdliscrimi- ~ €/€ctric phaseS>0, P>S$) at densitiep™ >0.7. As noted in
nates between ferroelectric and antiferroelectric phases. In 3¢ !l: in the isotropic phase finite-size effects account for
ferroelectric phas®=/(2S+1)/3=S, while in an antifer- nonzero order parameters which #10°7).

roelectric phaseP<S. Using these criteria a ferroelectric

phase can be distinguished from an antiferroelectric phase. B. k=0.25

Finite-size effects are apparent$calculated via the diago- In Table | we list simulation results fox=0.25 andN,
nalization of Q [15]; in the isotropic fluid the errors are =125. In Fig. 3 we show the order paramet@&sand S
O(1/YNg), while in orientationally ordered phases they areagainst density. It is clear that a ferroelectric phéedwrac-
O(1/Ny). terized byS>0 andP=S) appears at a densip/ =0.6. At

P is unity in a perfectly aligned ferroelectric phase and zer
in an antiferroelectric phase and in the isotropic ph&ses.
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FIG. 2. Order parameters against reduced dengitjor k=0, FIG. 4. Mean-squared displaceméR?) . against Monte Carlo
Ng=125: polarizatiorP (solid line); second-rank order paramefr cycle: k=0.25, p*=0.9, andNg=125 (solid line); x=0.3, p*
(dashed ling =0.925, andNg=256, run 1(dashed ling and run 2(dot-dashed
line).

a densityp* =0.9, the order parameters attain equilibrium

values ofP=0.95 andS=0.85, which are to be compared For the calculation of R?), the particles were allowed to
with P=0.82 andS=0.57 forx=0 at the same density. The |eave the central simulation cell. In Fig. 4 we show the evo-
increase in the orientational order and the decrease in thetion of (R?), during simulations with«=0.25 at a density
transition density on changing from=0 to x=0.25 are p*=0.9, i.e., the highest density studied with this dipole
likely due to the lowering of the energy associated with theseparation. Clearly the particles are diffusing at this high
nose-to-tail configuration of the spheres. This results in ariensity and hence the system is fluid. We conclude, there-
increase in orientational correlations which eventually givefore, that the system witk=0.25 undergoes a transition to a
way to global orientational order as the associated correlgferroelectric fluid at high density.

tion length diverges. With a dipole separation efr
=0.25r the system still favors ferroelectric order at high
density; we shall discuss this point further in Sec. IV.

The relative scarcity of ferroelectric liquids in the labora-  Simulation results fox=0.3 and system sizeN =125
tory is likely due to the fact that crystallization often pre- andNg=256 are given in Table I. With this dipole separation
empts the isotropic-ferroelectric-liquid transition. To checkwe find strong second-rank orientational ord8r=(Q0) for all
that the system is fluid we have monitored the “diffusion” runs with p*=0.9. In this density regime three simulations
of particles by calculating the mean-squared displacement ashowed antiferroelectric ordefN =125, p*=0.9; Nq

C. k=0.3

follows: =256, p*=0.9; Ng=256, p*=0.925, run 2 and one
showed ferroelectric orde(Ng=256, p*=0.925, run L
Ns Runs 1 and 2 witiNg=256 andp* =0.925 were started from
<R2>T=N_El [ri(7)—r;(0)], (4)  different well-equilibrated hard-sphere configurations. Table
si=

| shows that the configurational energies in the ferroelectric

and antiferroelectric states in runs 1 and 2 are identical
wherer;(0) is the position of theth particle at the start of within statistical accuracy, as are the second-rank order pa-
the simulation, and;(7) is its position afterr MC cycles.  rameters. Clearly there is no longer a strong preference to be

in a ferroelectric state over an antiferroelectric state. Inspec-

1.0 tion of some simulation configurations confirmed that the
antiferroelectric states for each system size were homoge-
08 | - neous and free of the ferroelectric domains which have been
2 observed in simulations of dipolar particles in vacuum
2 g6 | ] boundary conditionsd’ =1) [2].
§ In Fig. 5 we show the evolution of the order parameters
§04 | i during runs 1 and 2 withk=0.3 andp*=0.925. In both
s cases very long runs were required, which reflects the sam-
© pling difficulties which arise from the strong dipole-dipole
02 r i attraction between spheres in the nose-to-tail configuration.
In Fig. 4 we includg R?), for runs 1 and 2. It is clear that

00 01 05 06 07 08 09 10 the systems are fluid. After iMC sweeps each particle, on
p* average, has _dlffus_ed_approxma}te_ly on_e-and-a—hglf sphere
diameters, which highlights the difficulty in simulating sys-
FIG. 3. Order parameters against reduced densityfor « tems with strong highly directional attractive potentials. It is
=0.25,N,=125: polarizatiorP (solid line); second-rank order pa- these sampling difficulties which precluded us from simulat-
rameterS (dashed ling ing systems withx>0.3; some preliminary runs with
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FIG. 6. Interchain energigd; ., and relative free energids,
for the ferroelectric {) and antiferroelectricq) body-centered te-

FIG. 5. Evolution of the order parameters during the two simu-tr‘iIgonal lattices as a function & with re?uced fdlpole_ moment
lations with k=0.3, p* =0.925, andN =256: run 1(top); run 2 “321'25 and _reducgd densip/ 20'925: Uinter=Frei (SOlid line);
(bottom); P (solid line); S (dashed ling Uinier (dashed ling Fr, (dot-dashed line

—0.35 andx=0.5 showed very sluggish behavior and did WN€réy=vpo/p, so that the spheres in a given chain remain
not converge within accessible run lengths. in contact. This reflects the fact that the expansion of a real

close-packed lattice would likely be anisotropic by virtue of
the strong intrachain interactions.
Consider a sphere, on a given chain, with coordinates
The simulation results reported in Sec. lll can be summa0,0,0. Spheres in that chain have coordinates (Dj@r)
rized as follows. Fork=0, 0.25, and 0.3 the isotropic fluid wherej=0,1,2,.... The dipoles on each sphere on a given
undergoes a transition to an orientationally ordered fluid athain are aligned parallel to the chain. Spheres in the four
high density. Fork=0 and «=0.25 the fluid is strongly nearest-neighboring chains have coordinatesa/2,+b/2,
ferroelectric. Fok= 0.3, however, the simulations show that = (j +1/2)o). Spheres in the four next-nearest-neighboring
the fluid has no preference for ferroelectric order over antichains have coordinates=@,0,+jo) and (Oxb,*jo).
ferroelectric order. This implies that the free energies of thelao and Sun evaluated the contribution of chain-chain inter-
ferroelectric and antiferroelectric phases must be very similaactions beyond next-nearest neighbors to~H6 [16] and
at this dipole separation. so we shall ignore these here. In the antiferroelectric phase
An accurate theoretical calculation of the free energy ofthe four nearest neighbors of a given chain are aligned anti-
such dense fluids is, at present, unfeasible. In view of this wearallel to it, while the four next-nearest neighbors are
shall estimate the relative free energies of the ferroelectrialigned parallel to it. We take the polarization in the ferro-
and antiferroelectric states of a lattice of dipolar hard sphereslectric phase to bB=1, i.e., all chains are aligned parallel
and show that the stable polarization state changes with th® one another. We have computed the energies of the ferro-
dipole separation. electric and antiferroelectric statd$! andU?, respectively,
Tao and Suri16] have shown that the ground state close-as a function ofx. All dipole-dipole interactions between
packed crystal structure of regular dipolar hard spheres ( spheres withj;—j,|=0,1,2,..,1¢ were included, which is
=0) in the ferroelectric state is body-centered tetragonasufficiently long ranged for our purposes. The interactions
(BCT) with lattice vectorsayX, byy, andcyz and cell param- between dipoles on the same sphere were not included in the
eters energy sum. We estimate the free energies of the ferroelec-
tric and antiferroelectric states by including the orientational
aoza\/ﬁ, b0=0'\/3_/2, Co=o0. (5) entropy due to the presence of “up” and “down” dipoles,
ie.,

IV. LATTICE CALCULATION

The close-packed reduced densitypi$=4/3. We assume ; ;

that BCT is the stable state at finite temperature for both F'=Fo+ Uinyat Uinters (7)

ferroelectric and antiferroelectric phases. This assumption

will be sufficient to show that a ferroelectric-antiferroelectric Fe=Fo+UZ U —NgkgT In2. (8

crossover can be driven by dipolar interactions alone and

without an accompanying structural transition. The BCTF' andF? are the free energies of the ferroelectric and anti-

structure can be considered as a lattice of chains, each corferroelectric phases, respectively o and Uy, are the in-

prised of spheres in contact, aligned along thdirection.  trachain and interchain energies, respectively, Rgdcon-

Chains are a structural motif found in fluid and solid phasegains other contributions to the free energy which are

of dipolar hard sphere$4,17]. For densitiesp<p, we  assumed to be equal in both phases.

choose cell parameters Since the intrachain energy is identical in the ferroelectric

and antiferroelectric phases, the relative free eneFgy,

a=vyag, b=vyby, c=o0, (6) =(F—Fo—Ujwa), is sufficient to identify the thermody-
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TABLE II. Energies for the ferroelectric and antiferroelectric upper limit onxo could not be determined using simulations

body-centered tetragonal lattices with dipole separatiorand re-
duced densityp*. U4 is the intrachain energy and;,, is the
interchain energy.

K p* Uintraa'sll\ls:“v2 U intera'sn\ls/-lv2
Ferroelectric  Antiferroelectric
0.25 0.9 —11.4385 —0.3799 0.4236
0.30 0.9 —12.4416 —0.2622 0.2924
0.30 0.925 —12.4416 —0.2882 0.3228

namically stable state. Figure 6 shows,., and F as a
function of « for the two polarization states with* =1.25

due to the convergence difficulties highlighted in Sec. Il C.
There is, however, good agreement between the lower limit
on o obtained from the simulations of the fluid and that
predicted by the lattice calculations.

V. CONCLUSION

In this paper we have discussed a variation of the dipolar
hard-sphere model, where each sphere carries two dipoles
displaced towards the edges. We have presented simulation
results for a fixed dipole moment* =1.25 and densities in
the range 0.4p*=<0.925. For dipole separationso=0,
0.25 and 0.3 we observe transitions from the isotropic

and p* =0.925. With this dipole strength and density the fluid to orientationally ordered phases as the density is in-
antiferroelectric phase is seen to be more stable than thereased. Fok=0 and 0.25 the high-density fluids have net
ferroelectric phase at dipole separations in the ranges0.33polarization and so they are ferroelectric fluids. ker 0.3,
<ko=<0.67s. The variation in energy in the two states is however, the high-density fluid has no strong preference for
due to the change in proximity of dipoles in neighboring ferroelectric order over antiferroelectric order. In a sense the
chains, which is itself dictated by the underlying BCT struc-antiferroelectric fluid can be termed a normal nematic fluid
ture. Withu* =1.25 andp* =0.9 the corresponding range of by virtue of itsi<> —f symmetry, wheréi is the preferred
dipole separations is 0.32< ko<0.68. direction of alignment. The simulation results indicate that
In Table 1l are shown the intrachain and interchain con-the antiferroelectric fluid becomes at least as stable as the
tributions to the configurational energy far=0.25 andp*  ferroelectric fluid whernx=0.3 andp*=0.9. To gain some
=0.9, and fork=0.3 andp* =0.9,0.925. The lattice con- insight into this effect we have performed an elementary lat-
figurational energies are 20-30% higher than those frontice calculation which shows that the antiferroelectric phase
fluid simulations with the same parameters, which is to bdS thermodynamically stable over a range of dipole separa-
expected. In the lattice calculations the magnitude of the intions. Furthermore, the predicted range of stability is consis-
terchain energy is On|y 2—-4 % that of the total energy. In théent with the simulation results. This is an example of a fluid
ferroelectric phase the interchain energy is negative, corrdd Which dipole-driven orientational order occurs without a
sponding to attractions between chains, while in the antifernet polarization.
roelectric phase the chain-chain interactions are repulsive.
Therefore, the antiferroelectric phase becomes more stable
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